Preliminary communication

Synthetic approaches to gem-di-C-alkyl derivatives of carbohydrates: nucleophilic addition reactions of 3-C-methylene compounds derived from 1,2:5,6-di-O-isopropylidene- α -D-ribo-hexofuranos-3-ulose using phase-transfer catalysis

YOUSIF ALI* and WALTER A. SZAREK

Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6 (Canada) (Received June 19th, 1978; accepted for publication, August 14th, 1978)

In a previous communication¹ from this laboratory, the conversion of L-glutamic acid into *gem*-di-C-alkyl carbohydrate derivatives was described. As part of a continuing interest in this special class of branched-chain sugars, a novel and facile synthesis of these compounds has been accomplished by nucleophilic addition to a suitable C-(substituted methylene) derivative employing phase-transfer catalysis² (p.t.c.). Most of the known C-(substituted methylene) derivatives, commonly used as precursors to branched-chain sugars³⁻⁵, have been prepared by a Wittig reaction⁶. However, in the present approach such derivatives have been synthesized readily by way of a Knoevenagel reaction under mild p.t.c. conditions.

Treatment of 1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose (1) with ethyl cyanoacetate in 0.2M sodium hydroxide—benzene in the presence of tetrabutylam-

$$Me_{2}C$$
 OCH_{2}
 $Ne_{2}C$
 OCH_{2}
 $OCH_$

^{*}On leave from the Department of Chemistry, University of Baghdad.

monium bromide as phase-transfer catalyst, at room temperature, gave crystalline 2, in 85% yield, m.p. $90-91^{\circ}$, $[\alpha]_D^{23}$ +79° (c 1.1, chloroform). Addition of cyanide ion to 2, performed under the same p.t.c. conditions as just described, afforded, after column chromatography on silica gel [20:1 (v/v) benzene—ethyl acetate], the known⁷ cyanohydrin derivative 4 in 70% yield and the desired adduct 5 in only 10% yield. Surprisingly, however, when tetrabutylammonium hydrogensulfate was used as the catalyst, the 3-C-cyano-3-C-[cyano(ethoxycarbonyl)methyl] derivative 5 was obtained in 50% yield, m.p. $92-93^{\circ}$, $[\alpha]_D^{23}$ +75.7° (c 1.2, chloroform); a small amount of 4 was also formed. A similar result was obtained when the reaction of 2 with potassium cyanide was performed in dimethyl sulfoxide at 55°. Treatment of 5 with potassium cyanide in 95% ethanol gave the known³ 3-C-cyano-3-C-cyanomethyl derivative 6 in 50% yield, m.p. $116-118^{\circ}$, $[\alpha]_D^{22}$ +21.6° (c 0.8, chloroform) (lit.³ m.p. $121.5-123^{\circ}$, $[\alpha]_D$ +21°).

A more convenient and direct route to 3,3-di-C-alkylated derivatives was sought starting from the known⁵ 3-C-nitromethylene derivative 3, since in recent years several examples of nucleophilic addition reactions of sugar nitroolefins, for example, methyl 4.6-O-benzylidene-2,3-dideoxy-3-nitro- β -D-erythro-hex-2-enopyranoside and its α anomer, have been reported⁸. Accordingly, treatment of 3 with 1.2 equiv. of potassium cyanide in 0.2M sodium hydroxide—benzene and tetrabutylammonium bromide as the p.t.c. catalyst for 2 h at 20° afforded the desired product 7 in 73% yield, m.p. 120–121°, $[\alpha]_D^{22}$ +24.8° (c 0.8. chloroform); $v_{\text{max}}^{\text{Nujol}}$ 2210 weak (CN) and 1545 (NO₂) cm⁻¹. Similarly, a Michael addition reaction of 3 with 2 equiv. of ethyl cyanoacetate for 20 h gave 8 in 75% yield, m.p. 136–138°, $[\alpha]_D^{22}$ +22.4° (c 0.9, chloroform); $v_{\text{max}}^{\text{Nujol}}$ 1745 (ester C=O) and 1560 (NO₂) cm⁻¹. An alternative synthesis of gem-di-C-alkyl derivatives was found to be feasible by

An alternative synthesis of *gem*-di-C-alkyl derivatives was found to be feasible by direct introduction of an alkyl function into the nitromethylene derivative 3 by way of a Grignard reaction. Thus, treatment of 3 with methylmagnesium iodide in ether at -50° gave syrupy compound 9, after column chromatography on silica gel [20:1 (v/v) benzene-ethyl acetate], in 60% yield, $[\alpha]_{0}^{22}$ +27.3° (c 1.2, chloroform).

The structural assignments for the adducts described in this Communication were made on the basis of their ¹H-n.m.r. spectra (see Table I) and on the assumption that the addition reactions to the substituted methylene derivatives had occurred in a manner similar to those previously reported by other workers ^{3-5,9}, namely, from the less hindered exoside. The results of a ¹³C-n.m.r. study of these and other adducts will be reported separately.

The gem-di-C-alkyl derivatives described in this Communication are of significant synthetic potential, since their modification should yield carbohydrates containing two different functional groups of various kinds at the branch point.

ACKNOWLEDGMENTS

The authors are grateful to the National Research Council of Canada for financial support of this work and the University of Baghdad for a sabbatical leave (Y.A.). They are grateful also to Dr. D.M. Vyas for helpful discussions.

TABLE I

60-MHz ' H-N.M.R. SPECTRAL DATA

Compound ^a	Chemical shifts (8) b and first-order couplings (Hz)c								
	$H-1$ $(J_{1,2})$	H-2	H-4 (J _{4,5})	Н-5	H-6's	CMe 2	Ме	$H-1'$ $(J_{1',1''})$	H-1"
2	5.93d (4.0)	4.50d	-	- 4.26m		1.45m			
5	5.96d (4.0)	4.60d	•	- 4.50m		1.48m			
6	6.03d (3.8)	4.93d	3.73d (9.0)	4.	23m —	- 1.53m		3.30d (16.6)	2.80d
7	5.95d (3.5)	5.12d	3.63d (9.0)	 4.	45m —-	- 1.45m		5.06d (16.0)	4.66d
8	6.10d (3.8)	5.90d	3.66d (9.6)	4.	16m —-	- 1.43m		5.17d (16.6)	4.66d
9	5.80d (3.8)	4.56d	3.56d (9.0)	4.	03m ——	- 1.76m	1.36	s — 4.7	′0s —

^a In chloroform-d; tetramethylsilane as internal standard. ^b Signal multiplicities: s, singlet; d, doublet; and m, multiplet. ^c In parentheses.

REFERENCES

- 1 W. A. Szarek, D. M. Vyas, and L.-Y. Chen, Carbohydr. Res., 53 (1977) C1-C4.
- 2 E. V. Dehmlow, Angew. Chem., Int. Ed. Engl., 16 (1977) 493-505.
- 3 J. M. J. Tronchet and J. M. Bourgeois, Carbohydr. Res., 29 (1973) 373-385.
- 4 A. Rosenthal and D. Baker, J. Org. Chem., 38 (1973) 193-197; J. M. J. Tronchet, J. M. Bourgeois, R. Graf, and J. Tronchet, C.R. Acad. Sci., Ser. C, 269 (1969) 420-423.
- 5 H. P. Albrecht and J. G. Moffait, Tetrahedron Lett., (1970) 1063-1066.
- A. Rosenthal and L. Nguyen, J. Org. Chem., 34 (1969) 1029-1034; J. M. J. Tronchet, J. M. Bourgeois,
 J. Chalet, R. Graf, R. Gurny, and J. Tronchet, Helv. Chim. Acta, 54 (1971) 687-691;
 - J. M. J. Tronchet and J. M. Bourgeois, *ibid.*, 55 (1972) 2820-2827; A. Rosenthal, M. Sprinzl, and D. A. Baker, *Tetrahedron Lett.*, (1970) 4233-4235; J. M. J. Tronchet and J. Tronchet, *Helv. Chim. Acta*, 60 (1977) 1984-1989.
- 7 J.-M. Bourgeois, Helv. Chim. Acta, 58 (1975) 363-372; A. Rosenthal and B. L. Cliff, Can. J. Chem., 54 (1976) 543-547.
- 8 H. H. Baer and F. Kienzle, J. Org. Chem., 34 (1969) 3848-3853, 4204-4206; H. Paulsen and W. Greive, Chem. Ber., 107 (1974) 3013-3019; H. H. Baer and W. Rank, Can. J. Chem., 52 (1974) 2257-2267; T. Sakakibara and R. Sudoh, Chem. Commun., (1974) 69-70; T. Sakakibara and R. Sudoh, J. Org. Chem., (1975) 2823-2825.
- 9 A. Rosenthal and M. Ratcliffe, Carbohydr. Res., 60 (1978) 39-40.